Long-term Steady State Perfusion Culture of Mammalian Cells Using a Robust Microfluidic Cell Retention Device

نویسندگان

  • T. Kwon
  • N. Madziva
  • J. D. Oliveira
  • S. K. Chandramohan
  • L. Yin
  • M. E. Warkiani
  • J.-F. P. Hamel
چکیده

Cell retention devices are used to retain cells in containers during perfusion culture. However, the conventional membrane-based filtration devices have challenges such as membrane fouling/clogging and increased contamination risk due to frequent filter replacements. To solve these challenges, we introduce a new microfluidic cell retention device based on inertial cell focusing. We demonstrated a long-term steady state perfusion culture of suspended CHO cells, where high density of cells (> 3×10 6 cells/mL) and viability (> 90%) were maintained for more than a week. Our membrane-less and clog-free cell retention device has unique advantage over the conventional filtration devices for perfusion culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A practical guide to microfluidic perfusion culture of adherent mammalian cells.

Culturing cells at microscales allows control over microenvironmental cues, such as cell-cell and cell-matrix interactions; the potential to scale experiments; the use of small culture volumes; and the ability to integrate with microsystem technologies for on-chip experimentation. Microfluidic perfusion culture in particular allows controlled delivery and removal of soluble biochemical molecule...

متن کامل

Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture.

Microfluidic perfusion cultures for mammalian cells provide a novel means for probing single-cell behavior but require the management of culture parameters such as flow-induced shear stress. Methods to eliminate shear stress generally focus on capturing cells in regions with high resistance to fluid flow. Here, we present a novel trapping design to easily and reliably load a high density of cel...

متن کامل

A polystyrene-based microfluidic device with three-dimensional interconnected microporous walls for perfusion cell culture.

In this article, we present a simple, rapid prototyped polystyrene-based microfluidic device with three-dimensional (3D) interconnected microporous walls for long term perfusion cell culture. Patterned 3D interconnected microporous structures were created by a chemical treatment together with a protective mask and the native hydrophobic nature of the microporous structures were selectively made...

متن کامل

An adaptable stage perfusion incubator for the controlled cultivation of C2C12 myoblasts.

Here we present a stage perfusion incubation system that allows for the cultivation of mammalian cells within PDMS microfluidic devices for long-term microscopic examination and analysis. The custom-built stage perfusion incubator is adaptable to any x-y microscope stage and is enabled for temperature, gas and humidity control as well as equipped with chip and tubing holder. The applied double-...

متن کامل

Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion.

Modern microfabrication and microfluidic technologies offer new opportunities in the design and fabrication of miniaturized cell culture systems for online monitoring of living cells. We used laser micromachining and thermal bonding to fabricate an optically transparent, low-cost polymeric chip for long-term online cell culture observation under controlled conditions. The chip incorporated a mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016